Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc01438k Click here for additional data file.
نویسندگان
چکیده
Figure S1. Rietveld refinement patterns of PCN-888 using synchrotron PXRD data (λ = 0.72768Å): observed (blue), calculated (red), and difference (grey) profiles are shown; the tick marks below the curves indicate Bragg positions. The X-ray diffraction pattern between 1.1° and 4.2° is magnified in the inset. The full pattern shows a precise match between the experimental PXRD data and those simulated from the proposed structure.
منابع مشابه
Magnetic MOF microreactors for recyclable size-selective biocatalysis† †Electronic supplementary information (ESI) available: Experimental procedures, calibration curves and additional figures relating to capsule characterisation and biocatalysis. See DOI: 10.1039/c4sc03367a Click here for additional data file.
In this contribution we report a synthetic strategy for the encapsulation of functional biomolecules within MOF-based microcapsules. We employ an agarose hydrogel droplet Pickering-stabilised by UiO-66 and magnetite nanoparticles as a template around which to deposit a hierarchically structured ZIF-8 shell. The resulting microcapsules are robust, highly microporous and readily attracted to a ma...
متن کاملCoupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF.
A hierarchical porous metal-organic framework (MOF), PCN-888, containing three types of cavities was utilized to couple two enzymes into a tandem nanoreactor. The largest cavity (6.2 nm) can only accommodate one molecule of glucose oxidase (GOx). The intermediate cavity (5.0 nm) can accommodate one and only one molecule of horseradish peroxidase (HRP). The small cavity (2.0 nm) has sufficient s...
متن کاملHigh temperature ferromagnetism in π-conjugated two-dimensional metal–organic frameworks† †Electronic supplementary information (ESI) available: (1) Computational methods; (2) electronic band structures of NiMPc MOF monolayers (Fig. S1); (3) calculation results for NiMnPc MOF monolayers with NiO4 and NiS4 moieties (Fig. S2); (4) ferromagnetic transition temperatures of 2D Heisenberg model with single-ion anisotropy (Fig. S3); (5) structure and energetics of bulk NiMnPc (Fig. S4 and S5); (6) atomistic coordinate data of NiMPc MOF monolayers. See DOI: 10.1039/c6sc05080h Click here for additional data file. Click here for additional data file. Click here for additional data file. Click here for additional data file. Click here for additional data file. Click here for additional data file. Click here for additional data file.
Research Laboratory of Electronics, M Cambridge, Massachusetts 02139, USA Department of Chemistry, Massachusett Massachusetts 02139, USA. E-mail: mdinca@ Department of Nuclear Science and Enginee Engineering, Massachusetts Institute of Tech USA. E-mail: [email protected] Department of Physics, Massachusetts Massachusetts 02139, USA † Electronic supplementary information methods; (2) electronic band ...
متن کاملSeed-mediated growth of MOF-encapsulated Pd@Ag core–shell nanoparticles: toward advanced room temperature nanocatalysts† †Electronic supplementary information (ESI) available: Experimental details and catalysts characterization. See DOI: 10.1039/c5sc02925b Click here for additional data file.
متن کامل